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Dual-Compensating Composite Inversion Pulses for NMR

Xujie Yang, Zhengliang Zhi, Xiaobo Huang, Baohua Gao,
Lude Lu and Xin Wang"
Materials Chemistry Laboratory, Nanjing University of
Science and Technology,Nanjing 210094, P. R. China
B. C. Sanctuary
Department of Chemistry, McGill University,801 Sherbrooke
Street West ,Montreal ,Quebec H3A 2K6,Canada

ABSTRACT Dual-compensating composite inversion pulses de-
scribed as Wigner rotation matrix has been proposed for NMR
optimization. The main FORTRAN program was modified to car-
ry out optimization of the composite pulses, and the subroutine
DULS]J and DSLEQ were programed instead of ”IMSL” library
DBCLS]J to calculate Jacobian and Levenberg-Marquardt iteration
equations. Pulse and phase angles with respect to positive and
negative resonance off-set were optimized on the multidimen-
sional surface in search for the optimal parameters. It was found
that the results obtained by the proposed method are better than

other exsisting pulse sequences.
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INTRODUCTION

Composite pulse sequences have been proven to be very use

in NMR studies. Among the successful composite pulse se-

quences are WALTZ-16 [1] for hetronuclear decoupling of spin-

% nuclei in solution, COMARO-4 [2] for dipolar decoupling in

solid, and for broadband population inversion in solid state NMR
[3]. They are also adopted in many other NMR experiments, in-
cluding improvements in excitation or inversion bandwidts in
isotropic liquids [4,5], two-dimensional nuclear magnetic reso-
nance experiments [ 6], homo- and hetro-nuclear TOCSY experi-
ments [7,8].

Optimizing composite pulse sequence has been performed by
computer simulation numerically and analytically, for instance,
pulse-sequence optimization with analytical derivatives has been
proposed in oriented phases [9], optimization in widehand spin
inversion [10-127], and in studying optimal detection of "] (‘H—
¥Sn) coupling by 1D and 2D spectroscopy [13].

In this paper a new method using dual-compensating com-
posite m pulses is presented. A computer program uses a geometi-
cal model of the spin system to optimize flip angles and phases

with respect to resonance offset (Aw/wy).

THEORY

A pure 3-pulse applied to a single spin system I can be de-
scribed by the Hamitonian

G =T seeman+ &€= —"hl « H(t) D)
where H(t) is given by
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H(t) =Hcos(wt-¢)x—H;sin(wt-¢)y+H,Z (2)

On the multiple basis, this Hamiltonian is represented by [14]
= B seemant Ha=—Th NTAF1)/3 @ (DHqt)  (3)
q
Where @ (I)is the sperical tensors, q the sperical component.

For the system of isolated spin—% nuclei or systems of higher

spins, q=0,+1, the components are defined by [15]

N e e

V3

(D) =—il, 4)

VIA+1)
and Hyp, () =+ ——H,e*“®, H,,=iH,

e

Substituting this Hamiltonian into the quantum Liouville e-

(IcEily)

quation leads to the defining set of first-order differential equa-
tions for the time behaviour of the (214 1)? polarizations [16], in

the rotation frame of the Larmor frequency wo

Dgr="2 . g0 k=g T DK TS,
+9 L e G et D G e (5)

The solution to equation (5) is given by

qsg(t)=q2D;§?<n) . Ok (0) (6)
where k is the tensor rank, and { the Eular angle which could be
shown as

Q=(at¢, B, a—¢+Awtn) P)
with

cosﬁzé[sz-{—w%cos(Qt)]

2

sinB—Zﬂsin(&)[l &sinz(@-)]%
—a 2l a2
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Qt Qt
sina=—cos )[l—ﬂzsm > )] €:))
e B @)[1__ Q_H
cosa=—"grsin| stm 5

and
=/ (Aw?+w})

Aw=w—w,

wo=7H,, w,=7TH,

The above solution permits one to follow the effects of puls-
es, both on- and off- resonance, for any spin I. This result is of
particularly convenient in that the flip angle 8 and the azimuthal
angle « are parameterized in terms of experimentally controlled
variables Aw and w;, which will prove to be useful in exploiting
the properties of composite pulses.

For n composite pulses, equation (6) could be written as fol-
lowing form

()= q.@;:’(a ) ¢ D Q) DE o (D))

all

DE L Q)P (0) (9

where 7%, (1) are the elements of the Wigner rotation matrix.

For the system of isolated spin—% nuclei or systems of higher

spins, in which the Zemn or dipolar polarization ®} dominates,
this means that k=1, q=0,+1, and only elements of the rota-
tion matrix £ need to be considered, with the generation func-
tion for the reduced matrix elements &4y (Q) as given by Ed-
monds [ 17]

Dy (¢, By a—@+Awtn) = 1@ *H2t0gl  (B)e @+ (10)

where the dgy (B) are the matrix elements, given by [17]
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1 1. 1.
9 (1+4cosB) \/EsmB 9 (1—cosf)

diy =i — %sinﬁ cosf J%sinﬁ an
l(l—cosB) —-Lsinﬂ *1-(1+cosB)
2 vz 2

expansion of the equation (9) using relationship between equa-
tion (10) and (11) will obtain a 3 X3 matrix. An n dual-compen-
sating composite 7 pulse can be optimized for flip angles (8;) and
phase angles (¢;) with respect to resonance off-set (Aw/w,) by
using computer algorithm for the pulse sequences.

A composite pulse with N components is described by 2N pa-
rameters, being the flip angle B and phase ¢ of each component
pulse. They maybe written as a 2N-dimensional vector, which
can be defined as [18]

FOO=STET  x=@ufoBus ougrog)  (12)
where m==n. Minimizing f(x) with respect to the parameters x
and resonance off-set (Aw/w,) will yield the optimum {flip and
phase angles. Altering the resonance off-set (Aw/w;) will mould
more efficient parameters so that pulse sequences could be de-
signed according to the prevailing experimental imperfections,
and composite pulses could compensate the verious inadequacies
of a pure 8-pulse.

In reference [19], we reported composite pulses with phase
distortion, in which the "IMSL” library DBCLS]J [20], solving
the non-linear least square problems, has been used as subrou-
tine to carry out calculation on IBM/3600 computer to minimize

flip and phase angles with respect to a range of resonance off-set
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Table 1 Optimizing Procedures of Dual-Compensating 3-composite
Pulses

STARTING GUESSES ARE:
. T700000D+02 . 1560000D+03 . 2740000D+03 . 2060000D+03 . 5600000D+02

NUMBER OF PTS IS 12 NUMBER OF PULSES IS 3
NUMBER OF OBJECTS IS 6

GRADIENTS OF THE ANGLES ARE:
- 3175372D-04 . 1391481D-03 - 1162701D-03 .1376826D-03 -. 3996004D-04

THE RESIDUES ARE:

RESIDUES DEL
. 2698226D-01 . 0000000OD+00
. 1093906D-01 . 1000000D+00
. 1401256D-01 . 2000000D+00
. 1600041D-01 . 3000000D+00
. 9064342D-02 . 4000000D+00
. 8149340D-03 . 5000000D+00
. 2096492D-02 . 6000000D+00
. 1669228D-01 . 7000000D+00
. 2860626D-01 . 8000000D+00
. 2453362D-01 . 9000000D+00
.1161186D-01 . 1000000D+01
. 3043489001 . 1100000D+01

FSUMSQ IS . 4149525D-02
. 7672542D4+02

. 1661681D+03

FITTED ANGLES ARE:
. 2744184D+03

. 2081014403 . 5599434D+02

EREERABAERRKEERERARRRERERRR AR RERAERER RS RS AR AR SERERERRERERERE R SRRk ks

STARTING GUESSES ARE:
. T670000D+02 . 1662000D+03 . 2744000D+03 . 2061000D+03 . 5600000D+02

NUMBER OF PTS IS 13 NUMBER OF PULSES IS 3
NUMBER OF OBJECTS IS &

GRADIENTS OF THE ANGLES ARE:
~. 1339678D-04 . 1299619D-03 ~. 1605981D-03 -. 1058873D-04 -. 7242936D-04

THE RESIDUES ARE:
RESIDUES DEL
. 3787303D-01 . 0000000D+00
.1501496D-01 . 1000000D+00
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.1946017D-01 . 2000000D+00
.2378379D-01 . 3000000D+00
.1612269D-01 . 4000000D+00
. 35761356D-02 . 56000000D+00
. 9940854D-03 . 6000000D+00
. 1478797D-01 . 7000000D+00
. 3492616D-01 . 8000000D+00
. 4250764D-01 . 9000000D+00
. 2896473D-01 . 1000000D+01
.1355861D-01 . 1100000D+01
. 4491776D-01 . 1200000D+01

FSUMSQ IS .9163708D-02  FITTED ANGIES 4RF-

.TM1306D+02  1396282D+03 . 2839934D- 0 2131023Dw03 T215460D+02

LR R 2 2 RS S R R S L S S I R RSN PRSI RIS 3S I T2 2222 2 s ]

STARTIM: GUESSES ARE:

. 77140000D4+02 . 1396000D+03 . 2640000D+03 . 2131000D+03 . T220000D+02
NUMBER OF PTS IS 14 NUMBER OF PULSES IS 3
NUMBER OF OBJECTS IS 5
GRADIENTS OF THE ANGLES ARE:

. 8298800D-04 . 3210145D-04 .1717470D-03 .1981582D-03 . 7209062D-04
THE RESIDUES ARE:

RESIDUES DEL
. 4729348D-01 . 0000000D+00
. 2104183D-01 . 1000000D+00
. 2753940D-01 . 2000000D+00
. 3369425D-01 . 3000000D+00
. 2486300D-01 . 4000000D+00
. 7894660D-02 . 5000000D+00
. 7789248D-04 . 6000000D+00
.1228917D-01 . 7000000D+00
. 3846607D-01 . 8000000D+00
. 5880684D-01 . 9000000D+00
. 55644930D-01 . 1000000D+01
. 3096892D-01 . 1100000D+01
.1722734D-01 . 1200000D401
. 6686394D-01 . 1300000D+01

FSUMSQ IS .1914321D-01 FITTED ANGLES ARE:
. 7992082D+02 . 1248218D+03 . 2549897D+03 . 2178233D+03 . 8584690D+02
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(Aw/w;). In this study, the subroutines DULS] and DSLEQ
have been programed instead of the "IMSL” library DBCLS].

CALCULATIONS AND RESULTS

Calculations were carried out on a COMPAQ 586 personal
computer. Pulse angles and phases with respect to a range of res-
onance off-set (Aw/w,) were optimized on the multidimensional
surface of F(x) in search for the global minimum corresponding
to the "best” set of parameter values. Minimization routines us-
ing modified Levenberg-Marquardt algorithm [21] were adopted
to solve the non-linear least square problems. The optimized
steps involving numerical and geometical method are summarized
as follows.

(1) modify the main FORTRAN program for optimizing du-
al-compensating composite m pules and program subroutines
DULS]J and DSLEQ are used to calculate the mxn Jacobian ma-
trix (J;;=afi/3x;) of function F(x) and Levenberg-Marquardt iter-
ation equations

JXk+1=Xk+Pk

IPe=— Qb D T -+ £x))
where g is a damping factor of some non-negative value, and 1
unit matrix.

(2) input initial guess pulse angles (B)) and phase angles (¢,
set ¢;=0) and optimize the pulse angles and phases with respect
to a range of resonance off-set (Aw/w,), being termed DEL. The
optimized pulse and phase angles would be obtained.

(3) repeat step(2) and input the optimized pulse and phase

angles obtained from step(2) by increasing the resonance off-set
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Table 2 Optimized Dual-Compensating Composite Inversion Pulse

Composite pulses

Total length

compared with  Ref.

pulse/phase angles (deg. ) (Aw/wy) a simple pulse
1800 £0.12 1.0 18
180(0) +0.15 1.25 This paper
198(0) 382(204) $0.7 5.8 11
192.1¢0) 379, 9(208. 8) +0.7 5.8  This paper
79(0) 276(106) 79(0) 10.4 3.3 18
84(94) 251(0) 84(44) +0. 55 4.6 22
90(0) 240(90) 90(0) +0.6 5.0 23,24
86(0) 160(180) 260(9) +1.25  10.4 19
79.9(0) 125.2(217. 4) 255.0(85. 1) +1.3 10.8  This paper
64(0) 146(185) 320(310) 77(192) £0.4 3.3 18
180(0) 180(105) 180(210) 360(59) +0.6 5.0 3
52.5(0) 72.8(226.7) 72.3(122) 197. 6(26) +1.45 121 19
46.9€0) 92.9(219.0) 73.7(113.7) 217.1(19.9)  +1.5 12.5  This paper
64(32.2) 122(96) 310€0) 122(96) 64(32.2) +0.6 5.6 22
45(0) 180(90) 90(180) 180(90) 45(0) £0.8 6.7 3
98. 6(0) 140.9(144.8) 140.8(390.7) .

216. 3(133.2) 160. 4(34.7) *l.1 9.2 This paper
14€0) 257.8(99.5) 329. 6(306. 3) :

121. 4(143. 8) 222. 6(0) *1.3 10.8  This paper
52(0) 94(139) 66(196) 323(251)

143(159) 63(10) £0.47 3.9 18
107.6(0) 177(209) 68. 6(107. 6) 54. 1(339. 4)

109.8(190.3) 298. 8(37.2) +2.0 16.7 19
107(0) 176.7¢209.1) 69. 4(108.2) 54.1(339. 3) .

110.1¢190.1) 299, 3(36. 5) +£2.0 16.7  This paper
54(0) 135(163) 177(295) 381(11)

177(295) 135¢163) 54(0) +0.5 4.2 18
88.8(0) 91.8(117.4) 89.3(313) 296.2(139. 5)

128. 7(220. 3) 68. 7(248.2) 180.4(21.2) *z.1 18 19
89(0) 95.2(117.4) 91.5(316.9) 305.2(145.7) .

135.3(224. 5) 71. 2249, 6) 189. 1(19. 8) 2.1 18 This paper
77.2(0) 75(147) 74(349.3) 201. 8(203)

110.7(92) 116(273.7) 67. 6(91. 8) 266.1(23.4) T2¢ 20 19
77.2€0) 75(147) 74(349.3) 201.8(203) .

110.7¢92) 116(273.7) 67. 6(91.8) 266.1(23.4) T24 20 This paper
47.9(0) 67.5(57) 67.1(281) 164.1(187.2) t2.3 192 This paper

65.7(48.1) 65.6(259.7) 80.3(127.7) 268.4(0)
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(Aw/w;), until the ”best” values are obtained. The optimizing
procedures of a three dual-compensating composite x pulse 77. 0
(0) 156.0(206.0) 274.0(56.0) are listed in Table 1, which is
good to | (Aw/w,) | of about 1. 3.

(4) within the optimization procedures, the other pulse and
phase angles of dual-compensating composite 7 pulses were opti-
mized by means of above steps, the final results are summarized
in Table 2. As can be seen, the results are better than other ex-

sisting dual-compensating composite ® pulses.
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